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Abstract--The stability of the vapor film formed on horizontal cylinders during stable film boiling is studied. 
The wavelength of the fastest growing perturbation is compared to the observed spacing of bubbles detaching 
from the vapor-liquid interface. A three-dimensional variational approach leads to results which are in good 
agreement with experiment for a fluid in a normal gravitational field. The effect of Coriolis forces on data 
obtained in a centrifugal force field is indicated. 

INTRODUCTION 
It has been observed that during stable film boiling vapor bubbles are released from the 
vapor-liquid interface covering a horizontal cylinder. The frequency of formation and the 

spacing of these bubbles are of major importance to determine the minimum heat flux for stable 

film boiling since the latter consists mainly of the heat of evaporation carried away by the 

detaching bubbles. 
It was realized by Zuber & Tribus (1958) and Zuber (1959) that the Taylor instability of the 

film interface is responsible for the production of the bubbles. As summarized in the work of 
Lienhard & Sun (1970) several investigators studied the stability of the vapor-liquid interface on 

horizontal cylinders. The best results were obtained by Lienhard & Wong (1964). They studied 
the growth rate of a perturbation of the interface which is zero on the bottom and maximum on 

top of the interface while varying sinusoidally in the axial direction, as shown in figure la. This is 
in contrast with the symmetrical perturbation studied by other investigators (figure lb). Lienhard 

& Wong (1964) started from a force balance at the top of the cylinder in which surface tension 
forces are given some average value over the circumference of the interface, thus eliminating the 
angular dependence. This two-dimensional analysis resulted in the determination of the 

wavelength of the perturbation with the maximum growth rate, or "most dangerous" wavelength 
Xd, given by: 

3.464Dr x~=[g(p,_p,). 1 ]1/2 [1] 
T -gq 

in which g is the gravitational constant, R the radius of the interface, pt and #s are the densities 
of the liquid and the gas respectively and tr is the surface tension between them. This 
theoretically determined ad is somewhat smaller than the experimentally observed one. Lienhard 

& Sun (1970) compared their results obtained in a normal gravitational field and in a centrifugal 
field with the above equation, claiming good agreement if a band of wavelengths around the 
"most dangerous" one is considered. 

The purpose of the present work is to derive a more accurate expression for the "most 
dangerous" wavelength by means of a three-dimensional analysis. Recourse will be taken to a 
variational approach to interfacial stability which will be the subject of the next section. 
Subsequently this variational approach will be taken to study the stability of a horizontal 
cylindrical vapor film subjected to a normal gravitational field. This will be followed by a section 
on the effect of Coriolis forces acting in a centrifugal force field. Finally in the last section the 
conclusions will be drawn from the results obtained in this study. 
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(a) 

Figure 1. Asymmetrical perturbation (a) and symmetrical perturbation (b) of a cylindrical interface. 

(b) 

VARIATIONAL A P P R O A C H  TO STABILITY P R O B L E M S  

The analysis of Lienhard & Wong (1964) consists of perturbing the vapor-liquid interface and 
studying the development in time of the displacement by means of a balance of forces acting at 
the top of the cylinder. Instead of using this perturbation technique it is possible to determine the 
stability of a vapor-liquid interface by means of a variational analysis. A detailed treatment of 
this approach can be found in Berghmans (1972). In this section the variational technique will be 
outlined. Whether it is possible to apply it to the film stability problem will be analyzed in the 
following section. 

Consider a system of two stagnant, immiscible, incompressible and inviscid fluids which may 
be subject to volume forces derivable from potentials (figure 2). It is also assumed that the fluids 
are at the same temperature and that fluid 2 is completely immersed in fluid 1 and does not make 
contact with the wall 3. The sum U of the surface tension energy and the potential energy of this 
system is given by: 

 dS÷fv ' , dV E23 

in which $1~ is the contact surface between the fluids, V1 and V: the regions occupied by each 
and P1 and P2 their potential energies per unit volume. 

For such a system one can show that the principle of minimum free energy as stated by Gibbs 
(1876, 1878) for systems in which surface tension is important reduces to the principle that in 
order for the system to be in stable equilibrium it is necessary that the interface &_, assume such a 
shape that U reaches a minimum value. 

¢ 

I n 

Figure 2. General system of two fluids in contact. 
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The two extreme cases of this principle are well known. If surface tension is negligible with 

respect to potential forces, it is well known that a stable configuration is obtained if the potential 
energy of the system attains a minimum. For example if a container is filled with two fluids of 
different density and if gravity is the only important force, then equilibrium is reached when the 
contact surface between the two fluids is horizontal (the potential energy reaching an extremum). 
This equilibrium is stable only if the lower fluid is the more dense one, i.e. the potential energy of 
the system is minimal. 

On the other hand if only surface tension forces are important it is well known that the contact 
surface will have a stable equilibrium shape if its area is minimal (minimal surface tension 
energy). It is for this reason that a volume of fluid immersed in another fluid with which it does 
not mix will assume a spherical shape if the fluids have the same density. The spherical shape is 
the one with the smallest surface area for the same volume. 

If both surface tension and potential forces are present, it is not surprising therefore to see 
that the sum of potential energy and surface tension energy has to be a minimum. Several 
interesting applications of this principle can be found in Landau & Lifschitz (1959). 

The minimum principle stated above can be expressed mathematically by requiring that the 

first and the second variations of the sum of surface tension and potential energy of the system with 
respect to the value reached at a stable equilibrium should satisfy the conditions: 

and 
8U = 0 [3] 

8 2 U > O. [4] 

The first condition expresses the fact that the total energy reaches an extremum, or in other 
words that the forces acting upon the interface are in equilibrium. The second condition certifies 
that the extremum is a minimum and therefore that the equilibrium is stable. 

The first and the second variations of the potential energy are due to the displacements 8x(x) 
of the volume elements. Since the two fluids are incompressible it is necessary that: 

div (~x) = 0 
in which x is the position vector. 

As shown by Berghmans (1972) the first variation can be written as: 

[5] 

in which 

1 1 

N = ~x" n, [7] 

while p, and p2 are the pressures on each side of the interface of which Rk and Rz are the 
principal radii of curvature and n the unit normal vector directed into region 1. In order for 
condition [3] to be satisfied for any displacement N of the interface, it is necessary that an 
equilibrium shape satisfy: 

This is Laplace's equation for capillary phenomena which expresses the equilibrium of the 
interface. 

From [6] the second variation of U can be written as: 

[9] 
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Since the variation is taken around an equilibrium shape for which [8] is valid, [9] reduces to: 

62U= fs,2 N 6 [ p , - P 2 - ~ ( - ~ k  +-~z)] dS. [101 

The term in the square brackets varies only in a direction perpendicular to the interface, as 
follows from [8], therefore: 

1 1 1 1 
6 [p  1 -- p2 -- O" (~----~ "~ ~ l  )1  : N +-~'0 [111 

in which O/On designates partial differentiation in the direction normal to the interface. 
Applying the formula for the variation of the average curvature of the surface S~2, as given by 

Blaschke (1930), yields: 

62U = t r [  (TN-  Vs2N)N dS [121 
d8 12 

in which Vs 2 is the surface Laplacian on $12 and: 

10(p~-p2) [ 1 1 \2 2 
r = / = - - + = - /  Jr [131 

tT On RkRl " 

In this last expression the first term represents the contribution of the potential energy to the 
second variation of U. The pressure difference is determined by integrating the momentum 
equations for both fluids. The last two terms of [13] give a contribution of the surface tension 

energy to the second variation. 
To determine stability, it is the sign of the right hand side of [ 12] which is important. By means of 

the theory of the equivalence between differential equations and variational problems, as 

developed in the work of Courant & Hilbert (1968), it can be shown (Berghmans 1972) that finding 
the smallest value of the right hand side corresponds to finding the smallest eigenvalue v of a 

differential equation. In particular this theory leads to the expression: 

82U = vO'fs N2dS [1411 
12 

in which v is the eigenvalue of the differential equation: 

"rN - Vs2N - vN = O. [15t 

Thus it may be said that the stability problem has been reduced to an eigenvalue problem. It 

suffices to look for equilibrium interfaces, i.e. interfaces satisfying [8] and then to determine 
whether the differential equation [15] has negative eigenvalues or not. This differential equation is 
not easy to solve in general since the coefficient ~" depends upon the shape of the interface. 
However in the case of a cylindrical interface the solution can be readily obtained. 

Consider a cylindrical column of liquid of radius R in contact with another fluid. For a 
cylinder one of the principle radii of curvature is infinite, the other being equal to the radius of the 

cylinder. If gravity can be neglected, one obtains then from [13]: 

1 
r = -R---~. [16t 
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Furthermore for a cylinder the surface Laplacian is: 

V2 ~1 02+02  
s =~--~-~ ~--~. [171 

If the perturbation N is independent of the azimuthal angle 0, while varying sinusoidally (sin k~z) 
in the axial direction z, then: 

VsIN = -kz2N. [18] 

Therefore from [16], [18] and [15] it follows that: 

o r  

1 2 (-~--~ + k , - v ) N = 0  [19] 

v = -~  + k~. [20] 

Since the wavenumber kz is related to the wavelength A by: 

kz =--2¢r [21] 
A 

it follows that positive values of v, or stability, will be obtained for displacements with 
wavelength A < Ac in which the critical wavelength Ac is given by: 

J~c = 2erR. [22] 

This is the classical result as mentioned by Lamb (1932). Considerable complication of the 
problem occurs when gravity is taken into account, as will be shown later. 

Thus far it is possible to determine which interfaces are stable and which are not. Yet if a 
perturbation for which the interface is unstable is applied, it is not possible to determine how fast 
this perturbation will grow in time. Therefore the most unstable wavelength cannot be 
determined by the above variational approach. However if the perturbations of the interface are 
assumed to vary exponentially in time t: 

8x(x, t) = 8x(x)e ~t [23] 

then the expression for 82U remains the same except that the normal displacement N now will 
have the same time dependence as 8x(x, t). 

The system under consideration consists of a rigid container filled with two fluids which are 
stagnant at equilibrium. The total energy of this system remains constant since no energy can be 
transported through the container walls. Yet when considering time-dependent perturbations of 
the equilibrium state, part of this energy will appear in the form of kinetic energy (K). This is not in 
contradiction with the assumption of stagnant fluids since this refers to the equilibrium state (where 
K = 0). At all times it is true that: 

o r  

and 

K + U = constant 

8K + 8U = 0 [24] 

82K + 82U = 0. [25] 
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Condition [24] is always satisfied since the perturbation is around an equilibrium interface such 
that [3] is satisfied and because of the fluids being stagnant in the steady state so that the variation of 
the kinetic energy is of the second order in the perturbation. Substituting [14] into [25], it follows 
that: 

62K =-vCr fs N2 dS. [26] 
12 

The second variation of the kinetic energy of the system is related to the velocity of the 
displacements v by: 

1 62K=~pi~v ' v~dV+2pz fv v~dV, [27] 

while the velocities are related to the displacements by: 

aSx(x, t) 
v = -  = oJ6x(x, t). [28] 

0t 

Substituting this last expression into [27] gives: 

62K = ~p~o 2 6x" 6xdV +~p2w 6x" 6xdV. [29] 
i d V z  

Considering the momentum equation for each fluid and retaining only terms of first order in the 

perturbations, one has for each fluid: 

Ov p-~- = - grad p. [30] 

This shows that the velocity perturbations can be derived from a potential. Together with [28] it is 

therefore possible to put: 

3x(x) = grad 4>. [31] 

Substituting this expression into [29] one finds, after partial integration: 

l 2fs 32K =-~ (p262- pa6,)N dS. 
12 

[321 

Finally from [26] and [32] it follows that: 

1 z f s  fs Nz w (p262- p ,6 , )N  dS = -utr  dS. [33] 
12 12 

This relation can be used to calculate the growth rate of the displacements of the interface. The 

potentials have to satisfy the conditions: 

726,.2 = 0 [34] 

and 

_ 062 -~n ' =  N at S,2. [35] I 

Condition [34] follows from the incompressibility of the two fluids as expressed by [5]. The 

boundary condition [35] follows from [7] and [3l]. 
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In conclusion one can say that to study the stability of an equilibrium interface one has to look 
for the existence of solutions of the eigenvalue problem [15] with negative eigenvalues. If such 
solutions exist, their growth rate to can be determined from [33]. Unstable perturbations will give 
rise to positive values of to2 showing that the perturbations grow exponentially in time. Stable 
perturbations give rise to negative values of to2, indicating oscillatory behaviour in time. The 
"most dangerous" wavelength is the one which grows fastest in time and therefore is the 
wavelength of the unstable perturbation with the largest to. 

In principle this procedure can be applied to any equilibrium interface. In practice finding a 
closed form solution to the eigenvalue problem is not always possible. 

STABILITY IN A GRAVITATIONAL FORCE FIELD 

It will be assumed that the variational approach to interfacial stability problems as developed 
above can be applied to study the stability of the vapor-liquid interface around a heated horizontal 
cylinder in a normal gravitational field. 

Several conditions have to be satisfied in order to be able to apply the principle of minimum 
total energy. First the fluids have to be stagnant in the steady state. This can be readily assumed 
since the effects of natural convection and induced motion are negligible, as mentioned by 
Lienhard & Wong (1964). Incompressibility and immiscibility are also satisfied in the experiments 
under consideration. The only volume forces are gravitational forces which can be derived from a 
potential. Furthermore both fluids are assumed to be inviscid. It has been shown by Dhir (1972) 
that the effect of liquid viscosity/zi can be neglected if: 

Pl ~y 3/4 

~ f g  1/4(py _ Pg )3/4 >~ 1 

which is satisfied in the normal gravity experiments of Lienhard & Sun (1970). Finally it was 
assumed that both fluids are at the same temperature. In the experiments the liquid is uniformly 
heated to a temperature very close to the boiling temperature by auxiliary heating elements, 
before the horizontal cylinder is heated. Effects of temPerature gradients in the liquid are 
therefore negligible. A temperature gradient does exist in the vapor film. However due to the 
small density of the vapor, any effects of this gradient can be expected to be small. The only way 
then in which the heat flux can influence the experiments is through the mass transfer at the 
interface, caused by evaporation. It has been shown by Moureau (1972) that this mass transfer 
can be neglected if: 

qcq, 
1, 

h ~p~pfsg 

in which big is the heat of evaporation while qc and q, are the conduction heat flux and the total 
heat flux (conduction and radiation) respectively, through the vapor film of thickness s. In reality 
the condition above means that one should not approach the critical conditions. Also this is 
satisfied by the experiments of Lienhard & Sun (1970). In conclusion it can be said therefore that 
the experiments under consideration satisfy all the conditions necessary to allow application of 
the variational approach. 

If the.heated liquid is taken as fluid 1 and the vapor as fluid 2, then fluid 2 is in contact with a 
solid wall (the heated cylinder) which it covers completely, but not with the container wall. 
Therefore the displacement of fluid 2 has to be zero at the cylinder, which represents an 
additional boundary condition to ~b2. However from [35] it follows that 4'~ and $2 are of the same 
order of magnitude. In the present experiments: 

p2 ~ p~. [36] 
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This allows the term with p2 in[33] to be neglected such that therefore 62 does not have to be 

determined. This renders the above boundary condition and the presence of the cylinder wall 
completely irrelevant. The container wall 3 is taken to be very far from the cylinder such that there 
the boundary condition on fluid 1 is that its displacement becomes vanishingly small. 

To study the stability of a cylindrical interface use will be made of a cylindrical coordinate 
system (figure 3). The interface has a radius R which is approximately equal to the radius of the 

I 

\x I W// 
2 ~ Sl2 

Figure 3. Coordinate system used to study the stability of a cylindrical vapor film in a normal gravitational 
field. 

heater. If a perturbation of the interface is considered which has an angular dependence then the 
surface Laplacian is given by [17]. The coefficient z of the eigenvalue equation [15] becomes: 

1 0 ( p , - p 2 )  1 
= R2 ' [37] o" Or 

because one of the principal radii of curvature is R and the other is infinite. The eigenvatue 

problem can then be written as: 

[ l  O(p~-p2)_ _ 1__,] 1 02N 02N vN=O.  [38] 
N - R 2  002 Oz 2 Or R ' J  

For a gravitational force field the steady state pressure distribution across the interface is: 

so that: 

p , -  p2 = (p2-  pOgr sin 0 + constant, [39] 

O (p, - p2) = (p2 - p,)g sin O. [40] 
Or 

The constant term in [39] contains the surface tension pressure difference cr/R. Yet this does not 
enter into the picture since [0 (p, - p2)/Or] refers to the variation of the pressures at equilibrium as it 

represents the contribution of the change in potential energy to the change in U. 

With [40] the eigenvalue problem [38] then becomes: 

1 0 Z N  02N [(pl-O?),gsinO 1 vJN=O. oz--T+ [41] 

The displacement of the interface will be assumed to vary sinusoidally in the z-direction: 

N(O, z) = F(O) sin kzz [42] 
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in which the wave number kz is related to the wavelength it by [21]. Substituting ~ --- 0/2 + ~r/4 

into [41] yields: 
d2F 

+ (a - 2q cos 2~)F = 0, [43] 

with 
a = 4 + 4 v R 2 - 4 k ) R  2 and q = 2 B  2, [44] 

where the Bond number is defined by: 

B 2 = (pl - p.2)gR 2 [45] 
Or 

This dimensionless group represents the ratio of gravity forces and surface tension forces. 
Equation [43] is the well-known Mathieu equation. This equation has an infinite number of 

periodic solutions each being characterized by a specific relation between the coefficients a and 
q. For small values of q (or B) these solutions are listed in Abramowitz & Stegun (1968). The 
solutions one is interested in here are the ones which give rise to negative values of v. For small B 
only two such solutions exist, all the others therefore being stable solutions. These unstable 
solutions F, and F~ are: 

B 4 B 6 0 ~r / B 2 B4\ 
F , =  Fo,,~ [ ( 1 - - ~ + ~ ) s i n  ( ~ + ~ ) +  t - T + - ~ }  sin ( ~ + ~ ) ] ,  [46] 

for which the relation between a and q yields: 

and 

B 4 B 6 

a~ = 1 - 2 B ~ - T +  T ,  

B 4 2 11 6 0], F~= Fo,~[1--~-+ (B - ~ B  )s in  

[471 

[48] 

while a and B are related by: 

a~ = - 2 B '  + ~B 8. [49] 

The coefficients Fo,~ and Fo,~ are much smaller than R since the perturbations are assumed small 
in this linearized theory. The solutions for Fa and Fa are all valid for small values of B only 
(B < 0.8). The series expansions are truncated such that the contribution of the neglected terms is 
less than 0.10 for B <0.8. For larger values of B, more terms have to be retained in the series 
expansions of Fa and Fo due to the slow convergence of these series. The results obtained here (up 
to [71]) are valid only for B < 0.8. 

It should be noted that the first solution F~ satisfies the condition: 

and is therefore of the asymmetrical type, with zero displacement at the bottom of the interface, 
The second solution Fo reduces to the axi-symmetric solution, discussed in the previous section, 
for B = 0. 

The relation between the eigenvalue v and the Bond number is found by substituting a~ 
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respectively ao from [47], respectively [49] into [,14] yielding: 

, 3 B 2 B" B 6 
v~R - 4 2 8 + "~ + k~2R 2, 

B 4 7  
voR 2= - l - - ~ - +  BS + k]R 2. 

[511 

[521 

As shown above the transition from stable to unstable perturbations is characterized by a zero 
value of v. From [51] resp. [52] it follows that this transition occurs at critical values of the 
wavelength for the F~ and Fo solutions given by: 

27rR 
= B z B 4 B6, 1/2, [53] A~.o (~ +_~_ +_g___j~] 

2~rR 
h ~ . o = /  B 4 7 s \ ~"  [54] 

The latter reduces to [22] if gravitational effects are neglected. Perturbations of the F~ (Fo) type 
are unstable if their wavelength is larger than h..~ (At,o). To determine the growth rate of these 
perturbations the corresponding potentials ~b,i~ and &,.e satisfying [34] and [35] have to be found. 
Separation of variables applied to the Laplace equation yields: 

/0 7r\ Km(k~r) {30. 37r'~ K312(k~r) 
4)x,,(r,O,z)=C~ sin ~ + ~ - ) ~  sink~z +D~ s i n \ - ~ ± - - 4 - j ~ s i n k ~ z ,  [55] 

dr [r=R ~ [r-R 
with 

C~ = Fo,,, (1 B4 B6" B2 B4 
- ~ + ~ - ~ )  and D~= Fo,~(--~--+-i-~), [56] 

Ko(k~r) . . . .  K~(kj) sin k &l o(r, 0, z) = c o ~  sm K~z + Do , sm ~ d K - ~ l  ~', [571 

dr /~=~ dr I~-~ 

with 
. 11 6 

Co =Fo .o(1- -B; )  and D~=Fo.o(B--~-~B ), [581 

in which Ko, K,2, K,, K~/2, are the modified Bessel functions of orders 0, ½, l, -~ respectively. 
These potentials have to be substituted into [33], which for a cylindrical interface becomes: 

,  i?io Fro - ~  p~w Rr~,N dz dO = -vo" RN~ dz dO. 

Furthermore vo and vo have to be substituted from [511 and [52]. 
This yields for the F~ solution: 

1 2 3 B 4 B 6 ) C2+D ~ploa~ R /3 B 2 kz2R z . 
cr k4 + T + 8 32 C~ ~ DJ(LR + 1) 

IF k~R +~ (k~R +½)(k~R + l)+ 1 

in which use was made of the relations: 

dK3/21 (k~R ~) (k~R + 1)+ 1 k - dK,,21 k~Rd_~r)jL_R = + 
z/! ~ l , . r = ' ~  = - (~ + kzR) and K312(k~R) L R + I  Km(k~R ) 

[591 

[601 

[61] 
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For B < 0.8, D~ can be neglected such that: 

' 2 3 = ( ~  B2  B4  B6  ) (  ~ )  
~pxto~ R +_~_} kJR 2 L R  + [62] 

o- 8 32 " 

This equation shows the dependence of the growth rate o~ upon the wavelength. The maximum 
growth rate is reached at the "most dangerous" wavelength given by: 

12~-R 
A,~,,~ = 3B4 3B6) 1'2 

(10+6B2-~ ~ -  - - 1 
[63] 

Substituting [57] and [58] into [59] one obtains for the F~ perturbation: 

2R3 ( B" 7 ) ~p~toa = 1 +--~-- B 8 -  kz2R 2 
tr 2C 2 

in which use was made of: 

+ OZ 
Ko(kzR) K,(k,R) ' 

kzRK,(kzR) Dz2 [dKdd(k~r)]l,~R 

[64] 

dKo(kzr) = -kzrK,(kzr). [65] 
d(kzr) 

The dependence of to~ upon kz is much more complicated here yet here too the growth rate 
reaches a maximum at a value of kzR which depends upon B. 

The "most dangerous" wavelengths calculated from the maxima of to~ and to~, as given by 
[60] and [64], are plotted on figure 4 in a dimensionless form by defining: 

~d A = = - -  [66] 
AaF 

A 
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Figure 4. Most dangerous wavelength of a cylindrical vapor film in a normal gravitational field• I 
Experimental results of Lie~ard & Sun (1970); . . . .  A at maximal growth rate as found by Lienhard & 
Wong (1964); - -  A at maximal growth rate for the F~ perturbation; - - - -  A at maximal growth rate for the 
Fo perturbation; . . . .  A at 98 per cent of the maximal growth rate for the F~ perturbation; ...... A at 98 per 

cent of the maximal growth rate for the Fo perturbation. 
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with 

[67] 

in which haF is the "most dangerous" wavelength for a flat plate. On the same graph the 
experimental observations of Lienhard & Sun (1970), for normal gravity, are plotted, Considering 
the large spread of experimental data, the values of A for which the growth rate is 2% less than 

the maximum growth rate (for the same B) are also plotted. On figure 5 the dimensionless growth 
rate ~ defined by: 

- ~  ,, O) 

[ p,- j 
[68] 

is plotted vs A I R  for the F~ perturbation and for B = 0. The same qualitative behavior is 
obtained for B > 0. This figure illustrates how very large changes of h with respect to the "most 
dangerous" one give rise to small changes in the growth rate. The instability is not very selective 
and a broad wavelength band can contribute to instability. This explains the large spread in the 
experimental data. 

It can be concluded from figure 4 that the F~ perturbations are not responsible for the 
observed instabilities since their "most dangerous" wavelengths are too small, also if a 2% band 
in growth rate is allowed. The F, perturbations however explain the data perfectly if the effect of 
the finite thickness of the vapor film is taken into account, effect which is most pronounced at 
small radii (B < 0.3). It should also be noticed that the observations fall completely within the 
wavelength band based upon a 3% variation from the maximum growth rate, even if the film 
thickness is not considered. 

The analysis of Lienhard & Wong (1964) leads to the dimensionless "most dangerous" 
wavelength given by: 

( /3 
A L w  = k - B ~ J  ' [69] 

and the growth rate given by: 

~p,toLW k~R 
tr = - ~  + B 2 _ k , : R  ~ . [70] 

1.2 

I.O 
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Figure 5. Growth rate lq as function of )t/R for the F~ perturbation at B = 0. 
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Lienhard & Sun (1970) contended that with a wavelength band due to a 10% change in to it is 
possible to cover the data. However it should be noticed that their "most dangerous" wavelength 
is somewhat low. Indeed, regardless of the magnitude of the spread in to the observed 
wavelengths should be located on both sides ("straddle") of the "most dangerous" wavelength, 
since the latter is the one corresponding to the fastest growing disturbance and therefore is the 
one most likely to be observed. Yet figure 4 shows that ALw is always somewhat under the 

observations. 
It can be concluded from this that the F~-type perturbations are the only ones which explain 

the data well. From [63] and [66] it follows then that the most unstable wavelength for B < 0.8 is 

given by: 
2 31/2B 

1,2 [71] 
10 + 6B2"~ 2 - 

The F~ solution of the differential equation [43] is given by [46] for small B. The right-hand 
side of [46] contains the first two terms of a series expansion in sin [(2n + 1)(0/2 + ~r/4)]. For 
B > 1 more terms have to be considered in this expansion and it becomes very difficult to obtain a 
closed-form expression for A,. In addition, for large B, other solutions than F~ and F~, also giving 
rise to negative values of v become possible, which further complicates the matter. However also 
for large B the eigenvalue equation [41] is valid. Starting from this equation, a derivation now 
follows in which the limit value of A for large B is determined. 

The eigenvalue equation [41] can also be written as: 

_ R  2 r 1 0 2 N  1 a2N "] 
[ ~  ( - - ~  +~-~-rz J = B 2 sin 0 + 1 + vR 2. [721 

Considering that the terms in the square brackets are proportional to the inverse square of the 
wavelengths in the 0 and z directions, [72] shows that for large B the wavelengths are much 
smaller than R. This justifies a simplified approach in which a rectangular coordinate system x, y, 
z, located at the top of the cylinder is used. For distances from the top of the cylinder which are 
of the order of a wavelength it is possible to put: 

sin 0 = 1 

such that for large B, [72] becomes: 

a 2 0 2 

O2N + O2N 1 .B 2 
aX 2 '~-rz = --~-~( + vR2)N. [73] 

The range of Bond numbers for which this flat plate approach is valid can be estimated as 
follows. The significant wavelength here is the flat plate wavelength )taF as defined by [67]. It is 
assumed that this wavelength is smaller than the radius of the cylinder: 

or by making use of [67]: 

This yields: 

Aav < R, 

2 31/~7r 

B>10.  
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Thus it is found that the above approach in which only the region close to the upper part of the 
cylinder is considered is valid only for B > 10. 

If the perturbations are assumed to have a sinusoidal behavior in both x and z directions (the 
y-axis being the vertical direction): 

then [73] gives: 

N =  No sin kxx sin k~z, 

vR 2 = (kx2 + k Z)R ~ _ B 2. 

[74] 

Solving Laplaces equation [34] in rectangular coordinates with [35] as boundary condition and 
substitution into [33] gives: 

with 

k2 = kx2 + k2. 

Maximal growth rate is obtained when: 

[75] 

[76] 

or for kx = ks : 

B 
kR = ~7~, 

B 
kzR =6~-~, [77] 

so that the "most dangerous" wavelength is given by: 

2 6t/27rR 
Xd = - - - i f - - ,  [78] 

or in terms of the dimensionless "most dangerous" wavelength: 

A = 2  "2 f o r B > 1 0 .  [79] 

This is the same result as obtained by Sernas (1969) in his three-dimensional analysis of the 
stability of a vapor film on a horizontal flat plate heater. 

In conclusion of this section it can be said that for small B the variational approach leads to 
results which are in excellent agreement with experiment. In addition, for large B, the variational 
approach gives the same result as the one obtained by Sernas (1969). 

STABILITY IN A CENTRIFUGAL FORCE FIELD 

Lienhard & Sun (1970) published considerable data from experiments in which a cylindrical 
heater is placed in a centrifuge. This allowed to vary the volume forces acting on the fluid and 
thus to enlarge the domain of investigation. They compared these results with the predictions of 
the two-dimensional analysis of Lienhard & Wong (1964) and obtained rather good agreement. In 
this section it will be shown that the latter theory is applicable to a rotating system only under 
certain conditions. 

The major distinction between a system under the influence of gravity and one in a centrifugal 
force field lies in the fact that in the latter the fluids are not stagnant, their rotation giving rise to 
centrifugal and Coriolis forces. The latter forces give rise to first order perturbations in the 
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momentum equation so that the stagnant fluid approach as taken by Lienhard & Wong (1964) is 
not valid any more. Lienhard & Sun (1970) assumed that this analysis made for a normal 
gravitational force field remains valid in a centrifugal force field by replacing the gravitational 
constant by the centrifugal acceleration. Similarly the variational analysis given above is 
applicable only to fluids which are stagnant with respect to some inertial reference frame so that 
it cannot be applied to a rotating system. Therefore a new perturbation analysis will be developed 

here. 
In the centrifuge experiments reported by Lienhard & Sun (1970), the heated wire is placed in a 

rigid container filled with liquid (see figure 6). The wire is located a distance L from the axis of 
rotation in a plane perpendicular to this axis while it forms a right angle with the connecting rod OH. 
The axis of rotation will be taken as the z-axis of a cylindrical coordinate system r, 0, z. This 
system rotates together with the fluid at a rate y. For such a coordinate system the momentum 
equation for an incompressible, inviscid fluid becomes (Chandrasekhar 1961): 

0v+ , p-~ p tv" grad)v = - grad p + p [grad ½ (y × r) 2] - 2py x v. [80] 

The second and the third term on the right hand side of this equation represent the centrifugal force 
and the Coriolis force respectively. Thus varying ~, allows for variation of the gravitational 
constant g. Considering only terms which are of the first order in the perturbations, [80] 

reduces to: 
0v 

p ~-  + 2py x v = -grad p. [81] 

Comparing [81] to the first-order momentum equation for stagnant fluids as given by [30], it is 
seen that Coriolis forces come into play. The ratio F of the inertia force and the Coriolis force is 

given by: 

r = __o [82] 
2y 

if it is assumed that the velocity varies as e ~' which is the case during the initial stage of growth of 
an unstable perturbation. Substituting the maximum value of o~ from [62] and [63] into [82], it is 
found that for small B: 

1 11,  1 [L1 
F = ~ Lp,R~J = 2-B LR J " [83] 

In which use is made of the Bond number defined as: 

In the experiments of Lienhard & Sun (1970) the value of L/R is of order 104. Thus [831 seems to 

z C-~O /He oted wire 

Figure 6. Coordinate system used to study the stability of a cylindrical vapor film in a centrifugal force field. 
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indicate that the Coriolis forces do not play a dominant role, unless B is very large. Yet as shown in 
figure 4, small variations in ~o (say -+ 2%) give rise to large variations in A( -- 10%). Therefore even if 
Coriolis forces give only a --+ 1% variation in ~o (i.e. I" = 100) then a variation of A of -+ 5% may be 
expected. Considering [83] it may be said therefore that already for B > 0.5, the effect of Coriolis 
forces may give rise to appreciable changes in the A, B curve. 

This agrees with the experimental data. As shown on figure 7, the data reported by Lienhard & 

Sun (1970) tends to show an increased spread of the centrifuge data for B > 0.5. Furthermore this 
figure indicates that the values of A obtained in a centrifuge are somewhat smaller than the ones 

obtained in a normal gravitational field for B > 0.5. As shown above this different behavior may be 
due to the effect of Coriolis forces. Unfortunately a complete theory taking this effect into account 

is rather complicated. 

F4 

I-2 

I 0  

0.8 
A 

0.6 

0.4 

0 2  

I I I ~ I I I I I 

. /  
/ 

/ 
/ 

/ '  

/ I 

1~ 
: ¢ i  

0 0.2 0.4 0.6 0.8 I-0 

B 

Figure 7. Most dangerous wavelength of a cylindrical vapor film in a centrifugal force field. I Experimental 
results of Lienhard & Sun (1970); A at maximal growth rate from present theory; . . . .  A at 98 per cent of 

the maximal growth rate as given by the present theory. 

D I S C U S S I O N  

In the course of the analysis above it was necessary to make a number of assumptions. The most 
important one is the assumption of the applicability of the principle of minimum potential and 
surface tension energy. This principle is valid for stagnant, inviscid, incompressible fluids which 
are placed in a rigid container. These conditions are certainly well approximated in the experiments 

under consideration (for normal gravity) as shown above. Furthermore it is necessary that the 
system be completely isolated from its environment. This certainly is not the case in the heat 
transfer experiments: heat is transported through the fluids and gives rise to a phase change. The 
momentum transport at the gas-liquid interface which accompanies the evaporation can be 
neglected (according to the work of Moureau (1972)) since the experiments are performed under 
conditions which are far from the critical conditions. The energy contribution to the system due to 
heat transfer is transported through the system by means of the vapor bubbles rising upward. In 
short, for the experiments under consideration, the heat flux provides a constant flux of vapor 
necessary to reestablish the vapor film after bubbles detach from it. Essentially the same approach 
was taken by Lienhard & Wong (1964). A detailed justification for this approach can be found in the 
work of Hsieh (1972) on the effects of heat and mass transfer upon interracial stability. 
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In the present analysis it is found that only the F~ waves explain the data well. They are 
characterized by a zero amplitude at the bottom of the cylinder (condition (50)). The waves actually 
observed in the experiments also satisfy this condition. The physical explanation for this may be 
that due to buoyancy and vapor generation in the vapor film, the cylindrical interface is somewhat 
displaced upwards from the axis of the heater. This causes the spacingbetween heater and film to 
be much smaller on the bottom of the heater and thus to make displacements there impossible. 

In the analysis the thickness 8 of the vapor film has been neglected. If one considers the actual 
radius of the interface R + 8 instead of the radius of the heater, as one should, and if the Bond 
number is defined w.r.t. R + 8 then the data as represented on figure 4 should all be shifted to the 
right over an amount proportional to 8/R. Expressions for 8 as a function of the properties of the 
liquid and of the temperature difference between heater and liquid have been reported and 
evaluated by Baumeister & Hamill (1%7). They find that e.g. for methanol 1 + 8/R varies from 1.6 
for B = 0.01 to 1.2 at B = 0.5 and less for larger values of B. For small values of B this results in a 
considerable shift of the data to the right, yet this results into somewhat better agreement with the 
present theory (see figure 4). For B > 0.5 the shift is much smaller and the good agreement between 
theory and experiment is retained. In addition it should be kept in mind that the predicted limits for 
A, based upon a 3% variation in A, will encompass all the data. In any case it should be observed 
that the experimental data straddles the predicted values of A, based upon the maximum value of 
to~ even when the correction for the film thickness is taken into account. 

CONCLUSIONS 

A new variational approach to interfacial stability problems developed for stagnant fluids is 
applicable to fluids under the influence of a normal gravitational field. This approach leads to 
results which are in excellent agreement with experiment. The present work takes the 
three-dimensionality of the problem into account. 

This variational stability analysis cannot be applied any more to a fluid in a centrifugal force 
field. A perturbation analysis indicates that Coriolis forces might lead to corrections. 
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R~sum~--On 6tudie la stabilit6 du film de vapeur form6, autour de cylindres horizontaux, au cours de 
l'6bullition par film stable. On compare la longueur d'onde de la perturbation poss6dant la plus forte vitesse de 
croissance b. l'espacement observ6 pour les bulles se d6tachant de l'interface vapeur-liquide. Une approche 
variationnelle tridimensionnnelle conduit ~t des r6su'ltats qui sont en bon accord avec t'exp6rience pour un 
fluide dans un champ gravitationnel normal. On indique l'effet des forces de Coriolis sur les r6sultats obtenus 
dans un champ de forces centrifuge. 

Auszug--Die Stabilitaet des Dampffitms auf wagerechten Zylindern beim stabilen Filmsieden wird 
untersucht, Die Wellenlaenge der am staerksten anwachsenden Stoerung wird mit dem beobachteten Abstand 
zwischen sich yon der Dampf-Fluessigkeits-Trennschicht loesenden Blasen verglichen. Eine dreidimen- 
sionale Variationsmethode zeitigt Resultate, die mit Versuchen mit einer Fluessigkeit in einem normalen 
Schwerefeld gut uebereinstimmen. Der Einfluss von Coriolis-Kraeften auf in einem Feld yon Zentrifugal- 
kraeften erhaltenen Daten wird aufgezeigt. 

Pe3mMe---Idccne~loaaHa CTa6H.rlbHOCTb IlYleHKH napoB, qbopMHpy~ome~c~ B npot~ecce 
yCTOfiqHBOFO rlJieHOqHOrO KHHCH~4fl Ha roprt3OHTanbHblX tlnnrlH~2pax. ,~nHHa BO.qHbl Han60~ec 
6bICTpOro BO3MyLlleHH~I cpaBHeHa C Ha6~rO~eHHbIM O6"beMOM rty3bipe~, 060¢06.qstrotllrIxc~ 
OT rpaHrtlIbi pa311ena nap-~n,aKOCTb. TpexMepHblfl napHati.riOHHbl~ nO~2XO~ rlpriBO~HT K 
x o p o m o  cor.rlacytotltrfMC,q c 31<cnepHMertTOM OTItOCHTe.rlbHO )KH~KOCTH B O6blqHOM 
rpaBnTard, nOHHOM no.tie pe3y.ribraTaM, l-loKa3aHo B.rirI~lHne KopttofLqHCOBblX CHfl Ha ]laltHblt2, 
rlOYly~leHHble B rloJIe I/eHTpO6e~KHblX CHJI. 


